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1.0 SUMMARY 
This effort has explored the issues associated with the efficient mapping of neuromorphic 
computing strategies onto advanced computational architectures. The computing performed by 
neurological systems produces cognitive phenomena that have been high value, yet elusive, goals 
of computational researchers. Neuromorphic computing, as evident in primate brains, uses 
massive collections of modest speed synapses and neurons operating asynchronously in parallel. 

This computation is characteristically: 

• Performed with precision and robustness; 

• Accomplished with very low power consumption; 

• Performed in real time, allowing the fusion of sensing, planning, and interaction with the 
environment 

• Performed without programming, based on experience 

A characteristic challenge of the effort is its multidisciplinary nature. It combined ideas and 
research from diverse fields including computer architecture, neuroscience, cognitive 
psychology, cognitive modeling, dynamical systems, belief systems, software and computer 
engineering.  

This effort has produced some infrastructure suitable for continuing cortical modeling research. 
It consists of software, in addition to the models discussed, developed for and applied to 
modeling a visual input stream (a retina model, an optic chiasm model, and a thalamic-LGN 
model), a high throughput Publish/Subscribe messaging system, and high performance machine 
clusters (AFRL/RI’s cluster of 1760 PS3 CELL-BE platforms with 84 nodes with dual sextet 
cores, 1,008 cores total).  

2.0 BACKGROUND 
This is a report on the work sponsored by the Air Force Office of Scientific Research and 
conducted at the Information Directorate of the Air Force Research Laboratory to investigate 
architectural issues surrounding neurobiological inspired computational methods based on 
networks of structures roughly emulating cortical columns. The work consisted of a three year 
multidisciplinary effort focusing on determining how neurological systems perform those aspects 
of cognition associated with sensing and perception aspects of cognition. The work has focused 
on ventral tract (object recognition) aspects of the brain. Dorsal tracts are parallel to ventral 
tracts, and are theoretically associated with spatial properties. 

2.1 Rationale 
The focus of interest is the development of computer architectures capable of advanced 
applications requiring large scale parallel computing and complex communication between 
nodes. The interest is driven by the value of applications which can make use of such 
architectures (perception and situational awareness are examples), and technology advances 
moving to surpass one thousand cores per die in the next few years. This technology trend is 
grounded in the problems of cooling, clock slew and parasitic inductances, which grow 
significantly as clock speeds increase. The previous rapid rate of clock speed increase for CPUs 
has disappeared. Chip developers have turned to multicore technology to make use of the 
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continuing exponential trend towards increased transistor density. Multicore technology shifts 
problems from hardware to software and multiplies available parallelism. To make productive 
use of 100 thousand to 1 million processors, one must provide software, which can efficiently 
harness the parallelism inherent in the hardware. Software development is labor intense. The cost 
intensity grows significantly as parallelism increases. Software developers have few methods 
available to them to deal with parallel system design, except for messaging systems and 
multithread programming. No significantly better methods have emerged into common practice 
which displace or build on these. These techniques are suitable for small scale parallelism but 
grow unwieldy for systems even a few thousand processors. Existing High Performance 
Computer (HPC) platforms, like Blue Gene/L, can be configured with more than 130K processor 
cores. The challenge of harnessing parallelism on that scale for all but “embarrassingly parallel” 
applications (an application where very little communication is needed between processes) 
challenges the limits of programmability. Yet neural processing effectively harnesses parallelism 
on at least this scale. 

Cognition presents as an excellent target of study because primate brains are examples of the 
kind of computing architecture we seek. It also holds promise to meet the “programmability 
challenge” of large scale parallelism with self supervised learning, and is therefore itself 
potentially a key technology for approaching other difficult to scale applications like Parallel 
Discrete Event Simulation (PDES). PDES applications are models of physical processes in terms 
of state changes at discrete points in time. Example PDES applications include networking, 
electronics, command and control, particle physics, machinery, weather, and communication 
systems. These applications are characteristically intense in terms of CPU but challenge 
computer architectures with the need to communicate events to all affected elements within the 
simulation. PDES applications typically do not scale well across even a few hundred nodes. In 
parallel AFRL (6.2) research, new architectures are being developed to better address PDES, 
largely motivated by the neuromorphic insights uncovered in the research project. Specifically, 
the custom connectivity of synaptic networks is being mimicked in field programmable gate 
arrays to reduce the latency of event propagation across the massive architecture. 

Beyond the rather pragmatic utility of PDES acceleration on neuromorphically inspired 
architectures, there are many aspects of cognition valuable to the Air Force missions which may 
be within near-term grasp. Some of these include learning, vision, audition and olfaction, ability 
to navigate an environment, and goal seeking.  

These abilities have long been among the objectives of artificial intelligence research; but 
progress has been limited. In particular, solutions have lacked the robustness observed in natural 
systems. Thus competing “connectionist” approaches arise which draw inspiration from 
neurobiology to seek out these abilities. However, a significant impediment is that science has 
not yet worked out how the synapses, neurons and glia cells of a brain work systematically 
together to achieve cognition. Neuroscience has not traditionally been a “system centric” science. 
It tends to focus on ever narrowing details on anatomy, neurochemistry, and electrophysiology. 
While this narrowing of focus has progressed, related fields of interest have overlapped with 
neuroscience and provided resources crucial for the pursuit of neuromorphic computing. The 
medical community is an example; it relies on imaging technology for diagnosis. Neural imaging 
techniques are vital to neural surgeons and neurologists. Medical market pressures continue to 
promote improvement in resolution, and content. For example, the market has produced 
functional magnetic resonance imaging (fMRI) technology that can resolve blood oxygen level 
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dependent (BOLD) response on a sub-millimeter level, providing a means for imaging the 
routing of cortical nerve bundles previously undetectable in living specimens. These kinds of 
advances, combined with emerging large scale computer technology, enable a new approach to 
investigating how brains work. The new capability is the emulation of large pieces of a brain. 

It is becoming feasible to emulate full scale brains on a neuron level, at least insofar as 
computational complexity matters. The human brain has an estimated 1011 neurons, each with an 
average estimated 104 connections to other neurons. Single neuron models need to account for 
synapses (connections) and somas (cell bodies). A simple synapse model uses two numerical 
operations (OPs): an index (address addition) and a value addition (this would be the complexity 
floor). A simple soma model (threshold compare and assignment) is equivalent to two OPs. 
Thus, a human brain emulation (if all neurons and synapses happen to fire at once; an unlikely 
event) would require ~3X1015 OPs. A single Cell-BE node can peak at 2X1011 FLOPS. 15K such 
devices, by this measure, would be able to emulate a full sized human brain at about 1/1000 real-
time speed. Certainly, synapse and neuron level models can be more complex than this estimate, 
but it is also true that emulation may not always need to be carried out at a low level. 

Modern image processing software performs image detection and pattern recognition with fairly 
high accuracy given the condition that the input image is clean and fully observable. Pattern 
recognition becomes extremely difficult, if not impossible, when the image is partially obscured 
or even partially missing. Compared to computer-based image processing algorithms, the human 
brain exhibits extraordinary ability for pattern recognition in noisy environments because it 
generates anticipations based on the context of the input and knowledge of the problem. 

2.2 Organization of this Report 
This report is organized as follows:  

• Section 3 describes the research objectives.   

• Section 4 illustrates the results obtained in this effort summarizing emulation results. 

• Section 5 lists references used in the document. 
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3.0 RESEARCH OBJECTIVES 
Our objective is the study of an Intelligent Text Recognition System (ITRS) that mimics the 
human information processing procedure to fill in the missing or damaged text by considering 
the word level and sentence level context. The system is built upon two cognitive computing 
models, the Brain-State-in-a-Box (BSB) Attractor Model and the Cogent Confabulation Model. 
The former performs character detection and later performs word and sentence completion.  
Given a scanned text image where each character is 15-by-15 pixels large, experimental results 
show that, when 20% of the character images are damaged by a 1-pixel-wide horizontal scratch 
running through the center of the image where most of the information to distinguish amongst 
various characters is found, the ITRS recognizes complete sentences at 92% accuracy. When 
60% of the character images are damaged by a 3-pixel-wide horizontal scratch located at the 
center, the ITRS recognizes sentences at 64% accuracy. Furthermore, when 10% of the 
characters are completely occluded, the ITRS recognizes sentences and words at more than 60% 
and 95% accuracy respectively. When the occluded characters increase to 30%, the sentence 
accuracy drops to 20% and the word accuracy drops to 85%. 

4.0 TASK PERFORMANCE 
This section will describe the various tasks and results performed during the effort. 

4.1 Hybrid Intelligent System for Text Recognition on a Heterogeneous High 
Performance Computing Cluster 

With the progress in high performance computing (HPC) technology, the research in machine 
intelligence has entered a new era. How to harness the huge amount of computing power and 
memory storage provided by the modern HPC clusters and convert it to useful computations that 
assists or even replaces the human cognition process? Will the performance of current cognitive 
computing model scale as the hardware resource increases? What is the bottleneck of current 
HPC architecture when being applied to cognitive computing and how can this be addressed by 
future computing tools? These are urgent questions remaining to be answered. 

In previous summers, we have developed a hybrid intelligent system for text recognition. During 
this summer, we implemented the system on the 500 TFLOPs (Tera FLoating Point Operations 
Per Second) PlayStation3 cluster in AFRL/RIT. This report will introduce the basic concept of 
the intelligent text recognition system and the architecture of its implementation. The impact of 
the available hardware resources on the overall system performance will also be presented. 

4.1.1 Introduction 
Research discoveries in human psychology suggest that human information processing is a 
multi-level process [1]. Information is first processed by the sensory cortex where the complex 
data is reduced to abstract representations. The abstract representation is compared to stored 
pattern in massively parallel procedural at basal ganglia and neocortex to generate quick 
reaction. If more sophisticated processing such as reasoning is needed then relatively slow 
sequential process will occur in the prefrontal cortex. If we try to replicate these information 
processing steps, then it naturally requires machines with massively parallel processing 
capability and high computation speed as the first layer and machines with large memory space 
and high memory access speed at the second layer. No special requirements are needed for 
machines on the top layer because it processes the least amount of information among the three 
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layers. Furthermore, compared to our capability in pattern matching and object classification, 
human performs the worst in logic inference. 

What has been described is very similar to the 1,800 nodes HPC cluster that has been assembled 
at AFRL/RITB. The cluster consists of more than 80 sub-clusters and each sub-cluster is 
composed of one Intel Xeon Hexa-core processor as the head node, 22 Sony PlayStation3 (PS3) 
computers based on IBM Cell Broadband Engine processor, and 2 NVIDIA GP-GPU. Each cell 
processor has one PowerPC processor and 6 synergistic processing elements (SPE). Each SPE 
processor is a self contained vector processor that runs 4 floating point operations at 3.2 GHz. 
With 6 of these SPEs, a cell processor provides 192GFlops performance. Each PS3 only has 
256MB memory, which is relatively small comparing to the conventional desktop PCs. Overall, 
the 1,760 cell processors deliver 338 TFLOPs (Tera FLoating Point Operations Per Second) 
computing power and form the first layer hardware of a cognitive computing system. The Intel 
Xeon processor based head nodes naturally form the second layer. Each head node has 12 cores 
and 24GB SMART memory. The memory access speed could reach as high as 2GB/s per core. 

To explore the potential of the HPC cluster, a proof of concept prototype of an intelligent system 
for context aware Intelligence Text Recognition is developed. It adopts neuromorphic system 
architecture that incorporate massive parallel high performance computing techniques with 
advances in artificial intelligence and human psychology. The Intelligent Text Recognition 
System (ITRS) reads and understands the scanned text image at high speed. It learns from what 
has been read and, based on the obtained knowledge; it forms anticipations and predicts the next 
input image (or the missing part of the current image). Such anticipation helps the system to fight 
with all kinds of noises that may occur. 

The ITRS system is built on two cognitive computing models, the brain-state-in-a-box (BSB) 
model and cogent confabulation model. The details of these two models and their interactions 
will be presented in the next section. 

4.1.2 Background 
4.1.2.1 Brain-State-In-a-Box Model (BSB) 
BSB model is a simple, auto-associative, nonlinear, energy minimizing neural network [2][3]. A 
common application of the BSB model is to recognize a pattern from a given noisy version. BSB 
model can also be used as a pattern recognizer that employs a smooth nearness measure and 
generates smooth decision boundaries [4]. 

There are two main operations in a BSB model, Training and Recall. In this paper, we will focus 
on the BSB recall operation. The mathematical model of a BSB recall operation can be 
represented in the following form: 

𝑋(𝑡 + 1) = 𝑆(𝛼 ∙ 𝑨 ∙ 𝒙(𝑡) + 𝜆 ∙ 𝒙(𝑡) + 𝛾 ∙ 𝒙(0)),         (4.1) 
where: 

o x is an N dimensional real vector 
o A is an NxN connection matrix 
o A∙x(t) is a matrix-vector multiplication operation 
o α is a scalar constant feedback factor 
o λ is an inhibition decay constant 
o γ is a nonzero constant if there is a need to maintain the input stimulation 
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o S( ) is the “squash” function defined as follows: 

𝑺(𝒚) = �
𝟏                   𝒊𝒇 𝒚 ≥ 𝟏
𝒚      𝒊𝒇 − 𝟏 < 𝑦 < 1
−𝟏            𝒊𝒇 𝒚 ≤ −𝟏

�                                              (4.2) 

In [5], we implemented and optimized the recall operation of the BSB model on the Cell 
Broadband Engine processor. The runtime measure shows that, we have been able to achieve 
about 70% of the theoretical peak performance of the processor. 

4.1.2.2 Cogent Confabulation model 
Cogent confabulation [6] is an emerging computation model that mimics the Hebbian learning, 
the information storage and inter-relation of symbolic concepts, and the recall operations of the 
brain.  Based on the theory, the cognitive information process consists of two steps: learning and 
recall. During the learning, the knowledge links are established and strengthened as symbols are 
co-activated. During recall, a neuron receives excitations from other activated neurons. A 
“winner-take-all” strategy takes place within each lexicon. Only the neurons (in a lexicon) that 
represent the winning symbol will be activated and the winner neurons will activate other 
neurons through knowledge links. At the same time, those neurons that did not win in this 
procedure will be suppressed. 

 
Figure 1: A simple example of lexicons, symbols and knowledge links 

Figure 1 shows an example of lexicons, symbols and knowledge links. The three columns in 
Figure 1 represent three lexicons for the concept of shape, object and color with each box 
representing a neuron. Different combinations of neurons represent different symbols. For 
example, as Figure 1 shows, the pink neurons in lexicon we represent the cylinder shape, the 
orange and yellow neurons in lexicon II represent a fire extinguisher and a cup, while the red 
neurons in lexicon III represent the red color. When a cylinder shaped object is perceived, the 
neurons that represent the concepts “fire extinguisher” and “cup” will be excited. However, if a 
cylinder shape and a red color are both perceived, the neurons associated with “fire extinguisher” 
receives more excitation and become activated while the neurons associated with the concept 
“cup” will be suppressed. At the same time, the neurons associated with “fire extinguisher” will 
further excite the neurons associated with its corresponding shape and color and eventually make 
those symbols stand out from other symbols in lexicon I and III. 

Shape

Object

RED

Color

Lexicon I Lexicon II Lexicon III



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
7 

A computation model for cogent confabulation is proposed in [6]. Based on this model, a lexicon 
is a collection of symbols. A knowledge base from lexicon A to B is a matrix with the row 
representing a source symbol in A and a column representing a target symbol in B. The ijth entry 
of the matrix represents the strength of the link between the source symbol si and the target 
symbol tj. It is quantified as the conditional probability P(si | tj). The knowledge bases are 
obtained during the learning procedure. During recall, the excitation level of all symbols in each 
lexicon is evaluated. Let l denote a lexicon, Fl denote the set of lexicons that have knowledge 
bases going into lexicon l, and Sl denote the set of symbols that belong to lexicon l. The 
excitation level of a symbol t in lexicon l can be calculated as: 
𝐼(𝑡) = ∑ ∑ 𝐼(𝑠) �ln �𝑃(𝑠|𝑡)

𝑝0
� + 𝐵�  𝑠∈𝑆𝑘𝑘∈𝐹𝑙 , 𝑡 ∈ 𝑆𝑙. The function I(s) is the excitation level of the 

source symbol s. Due to the “winner-takes-all” policy, the value of I(s) is either “1” or “0”. The 
parameter p0 is the smallest meaningful value of P(si | tj). The parameter B is a positive global 
constant called the bandgap. The purpose of introducing B in the function is to ensure that a 
symbol receiving N active knowledge links will always have a higher excitation level than a 
symbol receiving (N-1) active knowledge links, regardless of the strength of the knowledge 
links.  

 

 

 Figure 2: Lexicons and knowledge bases for confabulation based sentence completion (Not all 
knowledge bases are shown in the figure) 

 

Based on the example provided in [6], confabulation based sentence and word completion 
software has been developed in AFRL/RIT. A sentence is represented using 39 lexicons that are 
arranged in 2 levels. The ith lexicon in level 1 represents the word (or punctuation) in the ith 
location of a sentence. Since there are 20 lexicons in level 1, the words or punctuations beyond 
the first 20 are discarded. The ith lexicon in level 2 represents two-word phrase that begins in the 
ith location of a sentence. The connections of the lexicons form a complete graph, i.e. there is a 
knowledge base between any two lexicons. Figure 2 shows the lexicons and the knowledge bases 
for the sentence completion problem.  

  

1 2 3 4 19… 20

1 2 3 4 … 19

…

…

…
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4.1.2.3 Hybrid model for Intelligent Text Recognition 
Military planning, battle field situation awareness, and strategic reasoning rely heavily on the 
knowledge of the local situation and the understanding of different cultures. A rich source of 
such knowledge is presented as natural-language text. In 2009, DARPA launched the Machine 
Reading program to develop a universal text to knowledge engine that scavenges digitized text to 
generate knowledge that can be managed by the artificial intelligence (AI) reasoning systems. 
The Machine Reading program limits its scope on the texts available on the World Wide Web. In 
real life, text exists in many forms other than its ASCII representation. These include printed 
texts such as books, newspapers and bulletins or hand written texts. There are many occasions 
when only the scanned or photographed image of the texts is available for computer processing. 
While the machine reading system bridges the gap between natural language and artificial 
intelligence, another bridge has to be constructed to link the natural existence of texts to their 
unique encoding that can be understood by computers. 

Conventional Optical Character Recognition (OCR) tools or pattern recognition techniques are 
not enough to meet the challenges in this task. Because the text images are usually captured 
under extreme circumstances, sometimes the images will be noisy, or incomplete due to the 
damages of the printing material, or obscured by marks or stamps. Pattern recognition is 
extremely difficult, if not impossible, when the image is partially shaded or partially missing. For 
example, given the image in Figure 3, it would be impossible to recognize the characters that are 
smudged or missing using only image processing techniques. However, such task is not too 
difficult for human as we have anticipations for the missing information based on its context.  

 
Figure 3: Lexicons and knowledge 

In this project, we developed a prototype of context aware Intelligence Text Recognition System 
(ITRS) that mimics the human information processing procedure. The ITRS system learns from 
what has been read and, based on the obtained knowledge; it forms anticipations and predicts the 
next input image (or the missing part of the current image). Such anticipation helps the system to 
fight with all kinds of noises that may occur during recognition. 
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Figure 4: Hybrid model of ITRS 

The ITRS is divided into 3 layers as shown in Figure 3. The input of the system is the text image. 
The first layer is character recognition software based on BSB models. It tries to recall the input 
image with stored image of English alphabet. In this work, a race model is adopted. The model 
assumes that the convergence speed of the BSB indicates the similarity between patterns. For a 
given input image, we consider all patterns that converge within 50 iterations as potential 
candidates that may match the input image. All potential candidates will be reported as the BSB 
results. Using the racing model, if there is noise in the image or the image is partially damaged; 
multiple matching patterns will be found. For example, a horizontal scratch will make the letter 
“T” looks like the letter “F”. In this case we have ambiguous information. 

The ambiguity can be removed by considering the word level and sentence level context, which 
is achieved in the second and third layer where word and sentence recognitions are performed 
using cogent confabulation models. The models fill in the missing characters in a word and 
missing words in a sentence. The three layers works cooperatively. The BSB layer performs the 
word recognition and it sends the potential letter candidates to the word level confabulation. The 
word recognition layer forms possible word candidates based on those letter candidates and send 
this information to the sentence recognition layer. There could be feedback paths that send the 
sentence level confabulation results back to word level or send word confabulation results back 
to character level. We believe that the feedback information can speed up the recognition process 
and its implementation will be our future task. Figure 4 shows an example of using the ITRS to 
read texts that has been smudged. The BSB recognize text images with its best effort. The word 
level confabulation provides all possible words that associates with the recognized characters 
while the sentence level confabulation finds the combination among those words that gives the 
most meaningful sentence. 

…but beginning to perceive that the handcuffs were not for 
me and that the military had so far got….

…but  b??i??in? to  p?r?ei?e t??t  ?he  ?andcuffs ?ere  n?? f?r me  
an? th?t t?e mi?itary ?ad  s? fa? g?t ….

BSB Recognition

Word Level Confabulation

Sentence Level Confabulation

but besieging 
believing
beginning
banishing
……

toporceite
perceive
parseile

twit
that
text
test
….

the
she

handcuffs nut
nun
nod
not
… 

fur
for
fir
far

me militarymad
lad
had
gad
…

fere
sere
were
here
… 

su
st
ss
so
…

any
ant
ann
and
…

thit
that

toe
tie
the
tee
…

fax
fat
far
fan
…

gut
got
get
gat
…

but b??i??in? top?r?ei?e t??t ?he ?andcuffs n?? f?r me mi?itary?ad ?ere s? an? th?t t?e fa? g?t

Knowledge 
Base (KB)

Knowledge 
Base (KB)

…but beginning to perceive 
that the handcuffs were not 
for me and that the military 
had so far got….

Perception

Prediction

Prediction



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
10 

 
Figure 5: Software Architecture of ITRS system 

4.1.3 Architecture of ITRS System on the Heterogeneous HPC Cluster 
Because the 18,000 node HPC cluster was still not ready in the summer, we implemented the 
ITRS on a smaller cluster with similar structure. The cluster has 14 sub-clusters and each sub-
cluster consists of one head node and 24 PS3s. The software architecture of the ITRS system is 
given in Figure 5. The architecture explores the parallelism in hardware and software to achieve 
a high throughput of the system. 

We partition the entire workload into pages. All sub-clusters run simultaneously and 
independently to process different pages. In this way cluster level parallelism is achieved. There 
is a performance monitor that periodically checks the CPU utilization of the processors in the 
cluster for performance characterization. Because each sub-cluster loads pages on-demand, at 
cluster level, our system behaves asynchronously.  

Upon receiving the page image, the head node will slice the image into small blocks, each one of 
these block contains one character. The blocks will be dispatched to the PS3s, where the BSB 
processes are running, for character reorganization. The results are sent back to the head node for 
word level and sentence level confabulation. With double buffering technique, the confabulation 
and BSB processes can be made parallel. Furthermore, all 132 SPEs in 22 PS3s are running 
simultaneously to process different characters. In this way, we achieve processor level 
parallelism. At this level, the system is loosely synchronous, because each BSB engine receives 
the same amount of image blocks and they perform the same amount of computation. 
Furthermore, because of the limited buffer space, periodic synchronization between the BSB and 
the confabulation is necessary. All inter-processor communication is implemented via Message 
Passing Interface (MPI). 

Based on the results from the BSB model, the host will fork multiple threads; each thread is a 
word level confabulation procedure. When all words in a sentence have been found, a sentence 
confabulation process is called. The word level and sentence level confabulation threads will be 
dispatched to different cores on the Intel Xeon processor, and in this way we achieve core level 
parallelism. The key reason that we choose thread level parallelism instead of process level 
parallelism is because it allows shared memory so that we do not have to duplicate the 
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knowledge base, which is more than 200MB large. In order to avoid frequent context switch, 
which usually happens when the number of threads is much greater than the number of cores, we 
adopt a token passing mechanism to control the number of threads. The program maintains a 
token pool. The number of tokens in the pool is less than or equal to the number of cores in the 
system. A token will be consumed when a thread is created and be returned when the thread 
ends. Because the threads are created on demand and complete dynamically, at this level, all 
cores work asynchronously. 

4.1.3.1 Sub-Cluster Level Task Interactions 
As we mentioned before, at sub-cluster level, the system is loosely synchronous. At the 
beginning of each iteration, the head node processes the scanned page and sends 96 character 
images to each PS3. Without waiting for the PS3 to send back the BSB results, the head node 
will go on working on the BSB results received in the previous iteration. During the same time, 
all PS3s performs the same amount of calculation and they will complete the calculation at 
approximately the same time. The potential candidates of matching patterns will be returned to 
the head node and stored in the MPI buffer. The head node will not process the MPI message 
until it has finished processing the previous returned results.  

At sub-cluster level, two techniques are used to increase the throughput of the system. First, we 
pipeline the BSB model and confabulation model on PS3s and head node. Therefore, the 
throughput of the system is determined by the maximum delay of BSB and confabulation instead 
of the total delay of these two. Second, by using the MPI for inter-processor communication, we 
implicitly use double buffering technique to hide the communication latency. 

 
Figure 6: Sub-cluster level task scheduling 

Figure 6 shows the sub-cluster level task scheduling. When the confabulation delay is much 
greater than the BSB delay, the communication latency for the send and receive procedure as 
well as the computation latency of the BSB model are hidden. The initiation interval of the 
system is determined by the delay of image processing and confabulation, i.e. 𝑇 = 𝑇𝑖𝑚𝑔 +
𝑇𝑐𝑜𝑛𝑓𝑎𝑏. When the confabulation delay is less than the BSB delay, the computation latency of the 
confabulation model is hidden, the system initiation interval is determined by the delay of image 
processing, the communication delay of sending and receiving MPI messages and the delay of 
the BSB model, i.e. 𝑇 = 𝑇𝑖𝑚𝑔 + 𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑏𝑠𝑏 + 𝑇𝑟𝑐𝑣. It is important to point out that 𝑇𝑏𝑠𝑏 is a 
constant. For each input image, the same number of BSB models are evaluated. Each BSB model 
is run for the fixed number of iterations in order to check their convergence speed. The quality of 
input image does not affect the BSB computation time. However, a lower image quality means 
that more potential candidates will be found by the BSB. Therefore, it increases the workload 
and execution time for word and sentence confabulation. 
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4.1.3.2 Multi-Threading Confabulation 
To fully utilize the multi-core architecture of the head node, layer 2 and 3 of the ITRS are 
implemented using multi-threading techniques. Figure 7 shows the task and data dependency 
graph of the ITRS system. A word confabulation process will not be triggered unless all the 
letters in that word have been processed by the BSB engine. Similarly, a sentence confabulation 
process will not be triggered unless all the words in that sentence have been confabulated. 
Obviously, the word confabulation process is triggered more frequently than the sentence 
confabulation process. Furthermore, each word confabulation takes longer time than sentence 
confabulation. This is because we need to find all valid words from the combinations of the letter 
candidates but only the most meaningful sentence from the combination of the word candidates. 

 

 
Figure 7: Task graph of the ITRS and the token management for multi-threading system 
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we could run 1 thread of sentence confabulation and N-1 threads of word confabulation. Each 
word confabulation thread processes one word. The sentence confabulation thread is the main 
thread which is always active. Besides sentence confabulation, it also performs other tasks such 
as character seperation and communicates with the BSB engines. The word confabulation thread 
is dynamically created when all letters belonged to a word has been processed by the BSB 
engine. After the word confabulation completes, the thread will be deleted. 

We keep the number of thread to be exactly equal to the number of cores in the processor in 
order to avoid excessive context switch. This is achieved by using a token passing mechanism. A 
token is used to represents the status of a core. It can be in 3 states: ready state, running state and 
completion state. A token pool is maintained in the main thread. The number of tokens in the 
pool equals to the number of cores in the system. All token in the pool is in the ready state. When 
all letters of a word are received and if there is a token in the pool, a new word confabulation 
thread is created and a token is removed from the pool. The status of that token is changed to 
“running”. When the word confabulation completes, the thread is deleted and the token state is 
changed to “completion.” Only after the results of the word confabulation have been collected by 
the main thread, the status of the corresponding token will be changed to “ready” and the token 
will return to the pool. The token passing mechanism guarantees that at any time the number of 
active thread is no more than the number of cores. 

 
Figure 8: Mapping ITRS tasks to a cluster with 24 PS3 processors and an N-core head node 
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The multi-threading architecture leads to an interesting synchronization problem. As shown in 
Figure 9, two circular buffers are maintained in the main thread. The first buffer is referred as 
“input buffer”. It stores the output from the BSB engine which will be used as the inputs by word 
confabulation. The input buffer is written in sequential order. It is read by the word 
confabulation also in sequential order. The results from word confabulation will be written into 
an “output buffer”. The item in the ith location of the input buffer will be written into the ith 
location of the output buffer. There are up to N-1 threads of word confabulation working 
simultaneously on N-1 different words. Their processing speeds are different. Whenever a thread 
completes processing a word, it writes the result to the corresponding location in the output 
buffer and fetches another word from the input buffer. As a result, the output buffer will be 
written out-of-order. The output buffer will be read by sentence confabulation process again in 
sequential order. A read pointer is used to indicate the starting word of the next sentence. When 
the next M entries from the read pointer have been filled (M is the number of the words in the 
next sentence), the sentence confabulation process will be called and those entries will be 
removed from the output buffer. 

In general, a new thread of word confabulation will start as long as the input buffer is not empty 
and a token is available. However, due to the variable confabulation speed of different words, it 
is possible that one of the threads is still working on a word that belongs to the sentence that will 
be read out in the next, while other threads have already filled up the rest of the buffer. Because 
the output buffer must be read out in sequential order, no sentence can be read from the buffer 
before the current sentence is read.  In this scenario, the output buffer is “full” and a stall 
happens. No new word will be fetched from the input buffer until the next sentence is removed 
from the output buffer. More strictly speaking, the stall happens when the following 3 conditions 
are true: 

1. The read pointer of the output buffer is at the ith location,  
2. There is one word confabulation thread working on the jth location, 𝑗 − 𝑖 < 𝑀, where M is 

the number of words in the next sentence, 
3. The current read pointer of the input buffer is at location j-1.  

 

 
Figure 9: An in-order/out-of-order double buffering system 
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4.1.3.3 Character Separation 
The flow of page image processing is given in Figure 10. The page image is initially in JPG 
format. It is converted into BMP format. The page is first divided horizontally into different lines 
and each line is vertically divided into characters. The bit map of each character will be stretched 
or scaled into 15X15 pixels. Finally the grey scale value of each pixel will be discretized into 
binary level, which is the required format for the BSB model. 

4.1.3.4 Performance Monitor 
A performance monitor is implemented to monitor and display the CPU activities of each sub-
cluster. Figure 11 shows the graphic display of the performance monitor. The top bar represents 
the Xeon head node. Each small box represents a single core in the head node. The 24 square 
boxes represent 24 cell processors. The upper rectangle in the box represents the PPE in the cell 
processor. The 6 smaller boxes below it represent the 6 SPEs in the same processor. The 
activities of processors are color coded with red representing the highest activity and blue 
representing the lowest activity. 

 

 

Figure 10: Processing flow of page image processing 

 

Figure 11: Graphic display of performance monitor 

4.1.4 Experiment Results 
We evaluate the ITRS system for its performance and accuracy. Its word level knowledge is 
trained by reading an English dictionary and its sentence level knowledge base is trained by 
reading 70 classic literatures. Our test case is extracted from the book “Great Expectation” by 
Charles Dickens. The text consists of 96767 letters or 23912 words. The text has not been read 
during the training process. In order to explicitly control the noise in the input, we use generated 

A l i c e w a s b e g i n n i n g
t o g e t v e r y t i r e d o f
s i t t i n g b y h e r s i s t e r
o n t h e b a n k , a n d o f
h a v i n g n o t h i n g t o
d o : o n c e o r t w i c e
s h e h a d p e e p e d i n t o
t h e b o o k h e r s i s t e r
… . .

JPG

Decoding
A l i c e w a s b e g i n n i n g
t o g e t v e r y t i r e d o f
s i t t i n g b y h e r s i s t e r
o n t h e b a n k , a n d o f
h a v i n g n o t h i n g t o
d o : o n c e o r t w i c e
s h e h a d p e e p e d i n t o
t h e b o o k h e r s i s t e r
… . .

BMP

A l i c e w a s b e g i n n i n g

Horizontal 
slicing

Vertical 
slicing scaling discretization

Xeon 
Core

SPE

PPE

Headnode

PS3



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
16 

bit map of text images instead of scanned text images. Horizontal scratches are added to the 
images of letters selected randomly. The amount of noises in the input is controlled by two 
means. (1) The thickness of horizontal scratches varies from 1 pixel to 3 pixels. Figure 12 shows 
the examples of the three different types of horizontal scratches. (2) The probability of scratched 
characters varies from 0.2, 0.4 to 0.6. 

 
Figure 12: Three different horizontal scratches 

 

Table 1 (a) and (b) give the rate of accurate sentence and accurate words after confabulation. 
They are calculated as the number of sentences (words) that have been correctly confabulated 
divided by the number of sentences/words that have scratches on it. Table 1 (c) gives the overall 
rate of correct words.  It is calculated as the total number of correct words (including both 
confabulated and none-confabulated) divided by the total number of words in the text. The data 
in Table 1 (c) and (b) are very close to each other. This is because the majority of words have at 
least one scratch. Therefore, they all need to go through the word confabulation process. 

Table 1: Recall accuracy at sentence and word level 
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Figure 1 shows the rate of correct sentence and correct words found by the ITRS when a well 
trained sentence level knowledge base (i.e. “long KB”) is used and a poorly trained sentence 
level knowledge base (i.e. “short KB”) is used. The size of the high quality knowledge base 
(“long KB”) is more than 6 GB, while the size of the low quality knowledge base (“short KB”) is 
2.7 MB.  The data series labeled as “% improve” gives the percentage improvement of the results 
obtained using “long KB” over the results obtained using “short KB”.  The results show that 
better knowledge at sentence level improves the sentence accuracy up to 80% and word accuracy 
up to 8%. 

 

(a) 
 

(b)  

Figure 13: Impact of sentence level knowledge base on the confabulation accuracy: (a) 
Comparison in sentence accuracy and (b) Comparison in word accuracy 

Figure 14 shows the relation between the word and sentence accuracy versus the level ambiguity 
in the input. The ambiguity is calculated using four different ways. “Cand./L” gives the average 
number of letter candidates for each letter in the input text, “candid/XL” gives the average 
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average number of candidate words for each word in the input text, and “candid/XW” gives the 
average number of candidate words for each word that has letters being scratched. The results 
show that the text recognition accuracy is a linear function with “candid/L” and “candid/W”. 
However, it has low correlation with “candid/XL” and “candid/XW”. The results indicate that 
the accuracy of ITRS is not determined by how many letters/words are scratched out and how 
severely each letter/word is scratched. It is determined by the ratio of the amount of ambiguous 
information versus the total available information. In other words, the ITRS performs letter/word 
recognition not only by looking at the ambiguous information itself by also by considering the 
context of the ambiguous information. 

(a) (b) 

(c) 
Figure 14: Word/sentence level accuracy versus the ambiguity: (a) Word accuracy vs. letter 

ambiguity, (b) (b) Sentence accuracy vs. letter ambiguity, and (c) (b) Sentence accuracy vs. word 
ambiguity 

Figure 15 shows the history of how the ITRS software architecture evolves during this summer. 
Before the summer, we have a base line implementation of the system. The architecture is shown 
in Figure 16 (a). All the software components are connected sequentially in an ad-hoc way 
except for the BSB engines that are running on 24 PS3s in parallel. Our first step is to improve 
the confabulation speed by multi-threading. Figure 16 (b) shows the improved architecture.  
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(a) (b) 

(c) 
Figure 15: Improvement of the ITRS system architecture 
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Figure 16: Performance improvement by multi-threading confabulation 

To evaluate the performance of the improved architecture, we carried out experiments on 3 
different input test cases. In the first input file 20% of character images are scratched by 1 pixel 
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confabulation time, sentence confabulation time and synchronization time. The concept of 
synchronization delay is introduced in section 3.2. The size of the input/output buffer in the 
double buffering system is set to 100 sentences.  

Figure 16 shows the runtime information for the 3 test cases when the number of word 
confabulation threads increases from 1 to 7. It also reports the performance improvements of the 
multi-threading implementations compared to the baseline implementation.   
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2. When the quality of the input text image deteriorates, the word/sentence confabulation time 
increases. This is because we rely on the confabulation to resolve the ambiguity in the input.   

3. When the quality of the input text image deteriorates, the synchronization delay gets longer. 
This is because the variations in the word confabulation speed increases as the level of ambiguity 
rises, and the in-order/out-of-order circular buffer will be blocked more frequently. 

4. With multi-threading technique, we can improve the runtime by up to 70% compared to the 
base line implementation. 

The results in Figure 16 show that with low quality input, the synchronization delay becomes the 
bottleneck that prevents us achieving linear speedups by using multi-threading technique. One 
way to relieve this bottleneck is to increase the capacity of the double buffering system. We 
increase the buffer size from 100 sentences to 200 and 300 sentences and run the experiment 
again on the low quality input file. Figure 17 gives the runtime information for the systems with 
3 different buffer configurations. The last data series (i.e. “buffer imprv”) gives the performance 
improvement due to the increased buffer size. The results show that with 7 word confabulation 
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threads, increasing the buffer size from 100 to 200 and 300, we reduce the runtime by 20% and 
30% respectively. 

 
Figure 17: Increasing the buffer size reduces the synchronization delay 

We further improve the software architecture of the ITRS by parallelizing the BSB and 
confabulation processes. The new architecture is shown in Figure 15 (c). Figure 18 shows the 
performance of the improved system on high quality, medium quality and low quality inputs. 
The buffer capacity is set to 300 sentences. The data series labeled “improvement” gives the 
performance improvement of the system over the base line implementation, while the data series 
labeled “improv2” gives the percentage speed improvement by comparing the parallel ITRS with 
multi-threading ITRS. The number of word confabulation threads and the buffer size of these 
two systems are kept the same. The results show that parallelizing the BSB and confabulation is 
most effective for the medium quality test cases, because the BSB time and confabulation time 
are approximately equal for this type of test cases and execute them simultaneously can cut the 
total runtime by 50%. 

(a) (b) 

(c) 
Figure 18: Performance improvement by parallelizing BSB and confabulation: (a) Results for high 
quality test case, (b) Results for medium quality test case, and (c) Results for low quality test case 

0
0.2
0.4
0.6
0.8
1

0
1000
2000
3000
4000
5000

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=1

t=2

t=3

t=4

t=5

t=6

t=7
sync sentence word bsb overall imprv buffer imprv

Buffer = 100 Buffer = 200 Buffer = 300

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0
20
40
60
80

100
120
140
160
180
200

t=1

t=2

t=3

t=4

t=5

t=6

t=7

sync sentence word
bsb improvement improv2

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45

0
10
20
30
40
50
60
70
80

t=1

t=2

t=3

t=4

t=5

t=6

t=7

sync sentence word
bsb improvement improv2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0
500

1000
1500
2000
2500
3000
3500
4000
4500

t=1

t=2

t=3

t=4

t=5

t=6

t=7

sync sentence word
bsb improvement improv2



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
22 

The previous experiments clearly show that the runtime of ITRS increases when the quality of 
the input text image reduces. The quality of the input text image can be measured by a parameter 
called “level of ambiguity.” It is calculated as the average number of word candidates for each 
input word. Figure 19 shows the relation between the time for ITRS to read one page of text 
image, which consists of 4000 letters, and the level of ambiguity in the input image. As we 
expected, when the information ambiguity increases, the ITRS read time increases exponentially. 
In this experiment, the number of word confabulation threads is set to 1. 

 

Figure 19: The ITRS read time increases exponentially as the level of ambiguity in the input 
increases 

4.1.5 Conclusions 
In this work, we introduced the hardware and software architecture of the Intelligent Text 
Recognition System. The system is based on a neuromorphic computing model. To achieve high 
performance we explore the parallelism in the hardware and the software. Detailed performance 
analysis is provided in this report. The results show that the ITRS system can achieve more than 
90% accuracy at sentence level and more than 98% accuracy at word level. 
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 
 

AFOSR Air Force Office of Scientific Research 

AFRL  Air Force Research Laboratory 

BOLD  Blood oxygen level dependent 

BSB  Brain State in a Box 

CELL-BE Cell Broadband Engine 

CPU  Central Processing Unit 

DARPA Defense Advanced Research Projects Agency 

fMRI  functional magnetic resonance imaging 

FTR  Final Technical Report 

HPC  High Performance Computer 

ITRS  Intelligent Text Recognition System 

JBI  Joint Battlespace Infosphere 

JPG  Joint Photographic Group 

MPI  Message Passing Interface 

OCR  Conventional Optical Character Recognition 

Ops  operations  

OS  Operating System 

PDES  Parallel Discrete Event Simulation 

PPE  Parallel Processor Engine 

PS3  Sony PlayStation3 

RI  Information Directorate 

SPE  Synergistic processing elements 

TFLOPs  Tera FLoating Point Operations Per Second 
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